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Abstract. We present a non-linear temporal domain analysis that allows us to choose among
previously published attributions of LO and TO E-symmetry phonon modes in the LiTaO3 crystal.
The work is based on the fact that an appropriate study of the phonon–polariton regime enables us
to reach a better accuracy in the knowledge of the one-phonon dynamics characteristics. The use
of a temporal domain four wave mixing technique with ultra-short light pulses is a powerful tool
in this respect. Precise examination of the phonon–polariton dispersion gives the ε⊥ component
of the dielectric tensor. Polariton damping leads moreover to appreciation of the strength of the
various temporal responses.

Lithium tantalate (LiTaO3) has been the subject of considerable interest over the past decades
as a result of its non-linear optical properties, and because of the intense electro-optic effect
it exhibits. The relations that exist between non-linear optical coefficients, IR absorption
and Raman scattering efficiencies of LO and TO phonons have therefore motivated general
spectroscopic studies [1], and also recording of numerous Raman spectra [2–4]. There has been
renewal in interest in these issues due to the development of non-linear spectroscopy. More,
using ultra-short laser pulses in a four wave mixing scheme makes it possible to describe
low frequency phonon dispersion curves in a rather large extent of phonon wavevector values
around the Brillouin zone centre. There, the phonon–polariton regime is of particular interest as
low frequency vibrational modes contribute mostly to the magnitude of the dielectric constant
in ferroelectric crystals. In this respect, particular attention has been paid on the lowest energy
A1 mode from LiTaO3 [5, 6].

Our work is devoted to the study of E-symmetry phonon–polariton dispersion curves.
Previous assignments of the LO–TO frequencies of the E-modes close to the Brillouin zone
centre [1, 4] were in conflict, in part because of an inadequate number of measurable peaks, with
those predicted by group theory, whatever the actual (C3, C3v or D3v) symmetry space group
of the crystal. The main goal of this contribution consists in the study of the phonon–polariton
characteristics, first to enlighten and correct preceding TO–LO attributions, and second to have
a direct insight into the contribution from the low frequency phonons to the dielectric constant.

It is well known that using ultra-short temporal pulses allows us to drive coherently any
phonon with frequency range within the spectral extent of the pump [7]. The laser used in
this study is a colliding pulse mode-locked oscillator connected to a four stage amplifier that
delivers 70 fs pulses at 20 Hz centred at 615 nm. Such temporal widths allow us to drive
phonons up to ∼300 cm−1 frequency. The necessary energy density for the pump pulse on the
sample is of the order of several GW cm−2; that of the probe pulse is at least ten times smaller.
The LiTaO3 sample is an x cut commercial crystal of dimensions 5×5×1 mm3 with its optical
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Figure 1. Experimental set-up. Upper part: four beam directions relative to sample axes; lower
part: wavevector and beam polarization projections on the (xz) plane.

c(z) axis oriented in the plane of incidence. Experiments are performed at room temperature
and the transparency of the crystal at the laser wavelength prevents any lattice heating.

When dealing with solid state excitation, the use of a two pump beam geometry with a
crossing angle θ between them permits us to choose the value of the wavevector of interest and
therefore describe quite easily the phonon dispersion in the polariton regime. This arrangement
is the non-linear temporal analogue to the well known forward Raman scattering experiments
in the spectral domain. The Raman tensors associated with active modes of LiTaO3 with C3v

symmetry are [4]:

A1 =
[
a 0 0
0 a 0
0 0 b

]
E(x) =

[ 0 −c −d
−c 0 0
−d 0 0

]
E(y) =

[
c 0 0
0 −c d

0 d 0

]
.

The actually driven phonon symmetry is defined by the pump pulse polarization characteristics.
Therefore, selecting exclusively E(y) phonons requires mutually perpendicular polarizations
for the pump beams. In the limit where θ = 0, the two fields are held by the same beam,
whose polarization is set at 45◦ from the crystallographic c axis [8].

We present in figure 1 a schematic view of the experiment: the geometrical arrangement of
the four beams (pumps, probe and signal), their polarization state and the wavevector direction
of the driven phonon–polariton. Excitation (and detection) geometry can be described by a
nomenclature analogous to that in use in the literature for Raman scattering experiments, say:
(x +z)(yz)(x−z). This configuration corresponds to the excitation of ordinary transverse
phonon–polaritons [9], for which there is no dispersion that depends on the angle φ between
the phonon propagation direction and the optical axis. The excited phonon wavevector q can
be described by two components, q‖ and q⊥, respectively along and perpendicular to the mean
direction of propagation of the beams. In the limit where the dispersion of the indices along
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the spectral range of the femtosecond pulses is not taken into account [10], their value reads:

q‖ = ωL
{�n2

0 − sin2(θ/2)	1/2 − �n2
e − sin2(θ/2)	1/2

}
(1)

q⊥ = 2ωL sin(θ/2) (2)

where n0 and ne are the ordinary and extraordinary refractive indices [11] and ωL is the central
frequency of the laser. Tuning the angle θ from ∼4◦ to 0◦ allows us to describe the dispersive
behaviour of the phonons from respectively q ∼ 968 cm−1 to q = 71.5 cm−1, a value limited
by the anisotropy extent of LiTaO3 at the laser wavelength. The efficiency of the non-linear
interaction rises its maximum at perfect phase matching between pump, probe and signal
beams. Geometrical and polarization characteristics for the probe and signal beam directions
are therefore symmetrical to the excitation ones with respect to the (xz) plane.

In the temporal domain, phonon modes may be modelled by damped sinusoids. In the
limit where the pump and probe temporal pulses can be approximated by δ functions, it can be
shown that the measured signal, the so called quadratic signal, is related to the squared sum of
individual response functions:

S(q, t) ∝
[ ∑

j

Aj exp

(
− t

τj

)
sin(ωj (q)t)

]2

(3)

where Aj and 1/τj are the amplitude and damping of the j th mode. In the spectral domain,
the response function can be written after Barker and Loudon [12] as:

R(q,�) = Im

[
1

c2q2/�2 − ε⊥(�)
]

(4)

where, as we are concerned with ordinary phonons, ε⊥(�) is the component of the dielectric
tensor perpendicular to the optical axis. In the spectral range where the phonons contribute
mostly, the dielectric function ε⊥(�) can be developed as follows:

ε⊥(�) = ε⊥(∞)
[

1 +
∑
j

sjω
2
TOj

ω2
TOj −�2 − i�γTOj

+ s ′
]
. (5)

Here ε⊥(∞) is the optical (high frequency) dielectric constant, sj the oscillator strength from
mode j having ωTOj transverse frequency and γTOj damping, s ′ depicts the contribution from
higher non-driven frequencies. The zeros of the dielectric function provide ωLOj longitudinal
frequencies. The dispersion relation reads:

c2q2/�2 − ε⊥(∞) =
[

1 +
∑
j

sjω
2
TOj

ω2
TOj −�2 − i�γTOj

+ s ′
]

= 0. (6)

It contains j complex roots (� = iγ ±ω) for each q value. Experimentally available q values
one can reach permit the description of the phonon dispersion in the phonon–polariton regime
and, as a consequence, give access to the low frequency dielectric constant.

Figure 2 gathers four theoretical sets of dispersion curves calculated using equation (5).
In each set, corresponding respectively to [1] to [4], drawn frequency phonon branches are
fitted using ωTOj and ωLOj Raman and/or IR measured values. Thus, for part (a) of figure 2,
we have used published oscillator strength values. In contrast, for sets (b) to (d), sj values
were taken as adjustable parameters; confidence in the curvature of these dispersion lines
may be therefore quite poor. The calculated dispersion line behaviour allows us first to
evidence discrepancies between the various LO–TO assignments. We will demonstrate that
an exhaustive measurement of the phonon–polariton frequencies in the high dispersion regime
is a unique tool for establishing the various true LO–TO assignments.
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Figure 2. Scheme of the phonon–polariton dispersion curves, as obtained by using equation (5):
a corresponds to [1], b to [2], c to [3] and d to [4].

Figure 3. Diffracted signal as a function of the delay between pump and probe pulses; squares
correspond to experimental results and lines to fit using equation (2); the inset gives Fourier
transforms of the experimental and theoretical signals.

Figure 3 presents the temporal signals that correspond to θ = 2.414◦ and therefore
q = 686 cm−1. The strong initial part at vanishing temporal delay between pump and probe
pulses corresponds to the electronic response. It is followed by periodic damped oscillations
observed for several picoseconds. This is the signature of the different phonon modes. Figure 3
displays also the theoretical response (as derived from equation (2)) that corresponds to the
best fit to experiment. As shown in the inset, the Fourier transforms of the temporal curves led
to collect combinations of ωj(q) phonon frequencies. They have to be attributed to various
phonon–polariton frequencies lying on specific dispersion branches. Since linear combinations
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Table 1. Frequencies (νa , νb and νc) obtained by Fourier transform of the quadratic signal and
their attributions to polariton branches ν1 and ν2 or ν1 to ν3, with regard to half the angle θ between
pump beams and corresponding q values.

νb (cm−1) νc (cm−1)
νa (cm−1) (2ν2) (ν3 − ν2) ν2 (cm−1) ν3 (cm−1)

θ/2 (◦) q (cm−1) (2ν1) or (2ν1) or (ν2 − ν1) ν1 (cm−1) or ν1 or ν2

0.000 71.5 22 11
0.530 307 100 50
0.560 325 107 53.5
0.650 376 145 124 72.5 196.5
0.681 385 157 120 78.5 198.5
0.704 406 151 125 75.5 200.5
0.830 476 158 127 79 206
0.890 512 158 131 79 210
0.925 525 162 129 81 210
1.207 686 184 117 92 209
1.321 753 200 108.5 100 208.5
1.476 841 222 101 111 212
1.700 968 234 98 117 215

Figure 4. Experimental points (diamonds) and calculated dispersion curves using parameters from
table 2; the diamond size recovers estimated wavevector and frequency error bars.

of frequencies that can be temporally resolved by our system are smaller than 250 cm−1,
frequencies at our disposal are few with respect to the whole set theoretically involved. The
only constraint we used in our choice corresponds to the fact that the dispersion curves do
not present any discontinuity. Reported in table 1 are experimental θ angles, associated
q values and involved frequencies labelled by an index i = 1 to 3 corresponding to the
expected dispersion curve. Asking for the existence of two (ν1 and ν2) or three (ν1, ν2 and
ν3) branches results in a correct fit of both the phonon quadratic signals as derived from
equation (2) and the phonon dispersion curves derived from equation (5). Thus the abrupt shift
observed in the lowest frequencies near q = 375 cm−1 can only be modelled by the existence
of two E-symmetry branches, the whole set of frequencies leading finally to a three branch
model.
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Table 2. Calculated oscillator strengths sj are obtained by using as inputs ν values from table 1
and νTO (cm−1) and γTO (cm−1) from [2]; resulting νTO and νLO frequencies are in concordance
with those from [2]. Numbers in parentheses correspond to a fit that includes a splitting of the third
dispersion curve.

[2] This work

νTO γTO νLO νTO νLO sj

69 21 70 69 69.5 0.4
141 10 200 141 196 4.7

(206) (207) (0.01)
249 7 275 249 275 0.9
316 12 345 314 345 0.7

0.8 (s′)

We have plotted in figure 4 the measured phonon–polariton frequencies with regard
with the calculated dispersion curves. Resulting sj oscillator strengths for the best fit are
reported in table 2, together with the data from [2] used in the fitting procedure. The
s ′ contribution from higher branches to the dielectric constant (see equations (4) and (5))
was kept constant. It has been estimated in order that the static dielectric constant, namely
ε0
⊥ = ε⊥(0), as derived from (4) using ε⊥(∞) = 4.82, should be in concordance with the

clamped experimental value εs⊥ = 41.0. The calculated ωLOj values are used as a consistency
check.

The results presented in figure 4 call for several comments. Just looking at the behaviour
of the lowest phonon–polariton branches, our temporal domain measurements corroborate
the attributions proposed by Penna et al. A phonon–polariton regime, characterized by a non-
linear technique conducted in the temporal domain, gives therefore a conclusive justification to
previous attributions based on Raman scattering by oblique phonons [2]. Concerning IR data,
calculated strengths remain in qualitative agreement with the pioneer work by Johnston [1].
We explain the non-simultaneous existence of experimental points in branches 1 and 2 before
q = 375 cm−1 by arguments based on a usual but very sensitive phonon–polariton damping
evolution as a function of q value. Figure 4 shows that below 375 cm−1 only the lowest
dispersion branch can be detected. In contrast, near 375 cm−1, the response of this lowest
branch decreases, while the response from the two upper polariton branches appears. We
demonstrate that these changes are related to a drastic modification of the damping rate around
the polariton regime. In fact, as expected from temporal damping measurements (figure 5, left),
and checked by equation (5) (figure 5, right) damping of the phonons of the lowest branch,
to which number 1 refers in figure 5, increases rapidly around q = 400 cm−1. It is due to
a change of polariton regime from photon-like to phonon-like. Therefore, its contribution to
the temporal domain signal decreases strongly from small time delays. Conversely, branch 2
evidences a photon-like regime close to the same q value. Moreover the phonon-like regime
depicted by branch 2 at larger q values exhibits a significantly smaller damping constant for
γTO2 than for γTO1 . Thus TO2 phonons still contribute to the signal at longer time delays
and are therefore more easily detected than TO1 phonons. Invoking only one dispersion
curve for this sudden shift in frequency near 400 cm−1 could be explained by coupling to
a symmetry-forbidden mode. This would be the case in two-phonon states as suggested
by Raptis [4]. Theoretical models built to describe this particular coupling rely on the �
dependent γ parameter [13]. As previously noticed [6], it predicts small dispersion changes
for the phonon–polariton frequency, but would lead to drastic modifications of the damping
dispersion that we did not detect. We have also represented in figure 4 a hypothetical splitting
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Figure 5. Left: evolution of the damping deduced from the three lowest phonon–polariton branches,
using equation (2) for fitting the temporal domain results; right: evolution of the damping of the
polariton as expected from equation (5); curves are labelled 1 to 3 in agreement with figure 4.

Figure 6. Real and imaginary dielectric function as calculated from equation (4), using parameters
of table 2 and with ε⊥(∞) = 4.82.

of the third dispersion curve. Nevertheless, the accuracy of our actual set-up does not allow us
to draw conclusions in that case; moreover, the changes in oscillator strengths given in table 2
by numbers in parentheses are negligible.

Fitting the dispersion curves gives an estimate of the oscillator strengths. They have
been used to calculate the real and imaginary parts of the dielectric constant in this frequency
region (figure 6), paying attention that the calculated curves take only into account the phonon
contribution to ε(ω). In fact, they should be confronted with experimental results performed
in the infrared spectral region to estimate the contribution of Debye relaxational modes [2] to
the dielectric constant. We notice that the predicted two main peaks correspond to infrared
data by Johnston [1], with a comparable oscillator strength ratio.
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Having examined the phonon behaviour in a q sensitive range, we can draw conclusions
with confidence on the three lowest TO and LO values from E-symmetry modes in LiTaO3

and on their associated dispersion curves. This work demonstrates the ability of femtosecond
pulses to easily excite and detect phonons in the polariton regime. The use of shorter pulses
would allow us to reach higher lying branches that are not accessible using our existing set-up.
A more extensive work in the temporal domain is planned to investigate the signal intensity
evolution as a function of q. It would permit us to compare directly Aj and sj parameters
and have therefore a better insight into ionic and electronic contributions to electro-optical
parameters.

The study of ω = f (q) dispersion curves for E-symmetry polaritons has allowed us to
analyse the ε⊥ component of the dielectric tensor. This is the counterpart of the study of
A1-symmetry polaritons [5] which led to the ε‖ component [9].
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